

Introduction to Representation learning: Approaches, Challenges and Applications

Shuyu Lin 2016 AIMS cohort, Cyber Physical Systems Group, Department of Computer Science, University of Oxford This PDF is generated automatically by Vizle.

Slides created only for a few minutes of your Video.

https://vizle.offnote.co (Login via Google, top-right)

Stay connected with us:

Join us on Facebook, Discord, Quora, Telegram.

What is Representation Learning?

Vizle

What is Representation Learning?

What is the representation of a cat?

What is Representation Learning?

- Representation is a summary of data, which
 - Omits the unnecessary details,
 - And preserves important content.

Evolution of Representation Learning

Evolution of Representation Learning (colling)

What makes a Good Representation

ion'

- Low dimensional
- Reusable across tasks
- Smooth and spatially coherent
- Disentangled
- Hierarchical and meaningful

How to learn a representation?

Data x

Generative models

p(z)

How to learn a representation?

Variational autoencoders (VAEs)

- What's the difference between VAEs and autoencoders?
 - Probabilistic formulation

How to use a learnt representation?

? Shuyutin

- · Anomaly detection in time series
- Latent space interpolation

Vizle

Anomaly detection in time series

Example 1: Microsoft Share Price

Avoid trading as the market is unusual?

Example 2: Amazon Server Utilization

2000

Every 5 ms

1000

4000

Is there any attack to my service?

Example 3: A Patient EEG readings Is my patent in a critical condition and needs intensive care?

Anomaly detection is very difficult

Because:

 Expertise and domain knowledge is often required to correctly identify an anomaly.

Anomalous events are rare and behaviours of anomalous events vary significantly from time to time.

As a result, anomaly detection for time series is practically an unsupervised learning task.

A high-level sketch for anomaly detecti

To respect the unsupervised learning nature of an anomaly detection task, we

Step 1: Aim to model the normal behaviours very well during training.

How to use learnt representation for anomaly detect

tec

Anomaly detection with a variational autoencoder (VAE) 1

Anomaly detection with VAE-LSTM hybrid mo

First, we train a VAE model to extract local information of a short window into a lowdimensional embedding.

Anomaly detection with VAE-LSTM hybrid me

Then, we use a LSTM model, which acts on the low-dimensional embeddings produced by the VAE model, to manage the sequential patterns over longer term.

Anomaly detection with VAE-LSTM hybrid models

After both the VAE and the LSTM model are trained, we can detect anomalies using the reconstruction error of the next window.

Anomaly detection with VAE-LSTM hybrid ma

The benefits of our design are clear:

- Our VAE-LSTM hybrid model can extract information beyond a short local window.
- The VAE module forms <u>robust local</u> <u>features</u>.
- The LSTM module estimates the <u>long-term</u> <u>correlations</u> in the sequence.
- As a result, our detection algorithm can identify anomalies that might span over <u>multiple time scales</u>.

Detection results

- Detect all anomalies
- 1 false positive, but it is a case worth further inspection

One false positive.

Good for safety-critical situations.

Detection results

Our VAE-LSTM hybrid model

- Detect all anomalies
- 1 false positive, but it is a case worth further inspection

VAE model

- Detect all anomalies
- Too many false positives

This PDF is generated automatically by Vizle.

Slides created only for a few minutes of your Video.

For the full PDF, please Login to Vizle.

https://vizle.offnote.co (Login via Google, top-right)

Stay connected with us:

Join us on Facebook, Discord, Quora, Telegram.